Artificial Intelligence/Machine Learning-Driven Small Molecule Repurposing via Off-Target Prediction and Transcriptomics

Author:

Rao Mohan1ORCID,McDuffie Eric1,Sachs Clifford1

Affiliation:

1. Neurocrine Biosciences, Inc., Nonclinical Toxicology, San Diego, CA 92130, USA

Abstract

The process of discovering small molecule drugs involves screening numerous compounds and optimizing the most promising ones, both in vitro and in vivo. However, approximately 90% of these optimized candidates fail during trials due to unexpected toxicity or insufficient efficacy. Current concepts with respect to drug–protein interactions suggest that each small molecule interacts with an average of 6–11 targets. This implies that approved drugs and even discontinued compounds could be repurposed by leveraging their interactions with unintended targets. Therefore, we developed a computational repurposing framework for small molecules, which combines artificial intelligence/machine learning (AI/ML)-based and chemical similarity-based target prediction methods with cross-species transcriptomics information. This repurposing methodology incorporates eight distinct target prediction methods, including three machine learning methods. By using multiple orthogonal methods for a “dataset” composed of 2766 FDA-approved drugs targeting multiple therapeutic target classes, we identified 27,371 off-target interactions involving 2013 protein targets (i.e., an average of around 10 interactions per drug). Relative to the drugs in the dataset, we identified 150,620 structurally similar compounds. The highest number of predicted interactions were for drugs targeting G protein-coupled receptors (GPCRs), enzymes, and kinases with 10,648, 4081, and 3678 interactions, respectively. Notably, 17,283 (63%) of the off-target interactions have been confirmed in vitro. Approximately 4000 interactions had an IC50 of <100 nM for 1105 FDA-approved drugs and 1661 interactions had an IC50 of <10 nM for 696 FDA-approved drugs. Together, the confirmation of numerous predicted interactions and the exploration of tissue-specific expression patterns in human and animal tissues offer insights into potential drug repurposing for new therapeutic applications.

Funder

Neurocrine Biosciences, Inc.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference79 articles.

1. Advances in Lead Generation;Holenz;Bioorg. Med. Chem. Lett.,2019

2. Drug Discovery: A Historical Perspective;Drews;Science,2000

3. Hit and Lead Generation: Beyond High-Throughput Screening;Bleicher;Nat. Rev. Drug Discov.,2003

4. Pre-Development Attrition of Pharmaceuticals: How to Identify the Bad Actors Early;Ralston;Toxicol. Sci.,2017

5. Trends in Hit-to-Lead Optimization Following DNA-Encoded Library Screens;Reiher;ACS Med. Chem. Lett.,2021

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3