Recrystallization Mechanism and Processing Map of 18CrNiMo7-6 Alloy Steel during Hot Deformation

Author:

Xie Yikui,Wang Qicheng,Chen Zikun,Wu Xiaodong,Liu Hui,Wang Zhongying

Abstract

In this study, isothermal single-pass forming doformation of forged 18CrNiMo7-6 alloy steel was carried out by Gleeble-3500 thermal simulation testing machine. The constitutive equations and processing maps with parameters of deformation temperature and strain rate were established. The results show that the optimum hot deformation parameters are temperature 1050 °C, strain rate 0.1 s–1 with the peak power efficiency being 0.432. The mechanism of grain refinement during hot compression was also characterized by electron backscatter diffraction (EBSD). The results show that continuous dynamic recrystallization (CDRX), discontinuous dynamic recrystallization (DDRX) and grain growth are the main microstructure evolution mechanisms during hot working. The rotation of sub-grains under CDRX mechanism is the main factor for the formation of new grains. In addition, the DDRX mechanism is formed by the bulging of HAGBs at the grain boundary triple junction of the original grains, and the CDRX mechanism forms finer grains. The study also found that temperature affected the organization evolution mechanism, the DDRX mechanism plays a leading role when the temperature is low. With the increase of deformation temperature, CDRX begins to play a leading role and forms finer grains. When the deformation temperature rises to 1150 °C, the grains continue to grow at a higher temperature.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3