Hot Forging Die Design Optimization Using FEM Analysis for Near-Net Forming of 18CrNiMo7-6 Steel Pinion Shaft

Author:

Rajendran Nijenthan1,Yurgel Charles Chemale1,Misiolek Wojciech Z.1ORCID,Alves de Sousa Ricardo2ORCID

Affiliation:

1. Loewy Institute, Materials Science and Engineering Department, Lehigh University, Bethlehem, PA 18015, USA

2. Center for Mechanical Technology and Automation, Department of Mechanical Engineering, Campus de Santiago, University of Aveiro, 3810-183 Aveiro, Portugal

Abstract

The objective of the presented work was to develop a new forging process for a pinion shaft as a component of a wind turbine. A study of near-net-shape forming using Deform 3D software was performed to reduce operational cost, time, and material scrap; enhance specific properties; increase productivity. Near-net forged products have good dimensional accuracy and continuous metal flow lines, which are characteristic of improved mechanical properties. To avoid the traditional trial-and-error experimental method, the process and tool design were accomplished with a careful and detailed numerical simulation approach. In the present work, the Finite Element Method was used to develop a process model for the existing hot forging process of the 18CrNiMo7-6 steel pinion shaft used in a wind turbine. The developed numerical process model was validated via experiment including a comparison of the metal flow lines from the FEM model with the metallography results of the forged part. Two new die designs were proposed, and the simulation results were compared to the actual process to achieve improved geometry. The results for the new geometries showed improvements in terms of the die cavity filling for the new proposed dies and better results in grain flow orientation. Compared to the initial non-optimized die, the new designs improved the mechanical properties and savings associated with the lower volume of required raw material and fewer finishing operations. Considering the applied stresses and wear in the new near-net shape, the die geometry shall be updated to accommodate more severe solicitations. Naturally, all the improvements carried out are dependent on other factors such as the conditions of the equipment, operator skills, lubrication, and other variables. A surface heat treatment is also suggested for stress relief as a reliability improvement.

Funder

Loewy Institute at Lehigh University

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3