18CrNiMo7-6 with TRIP-Effect for Increasing the Damage Tolerance of Gear Components — Part I: Alloy Design

Author:

Bambach Margarita D.1,Stieben Andreas1,Bleck Wolfgang1

Affiliation:

1. RWTH Aachen University

Abstract

High performance components such as gear wheels shall be resistant to rolling-contactfatigue. This type of failure is usually caused by effects occurring on a microscopic scale, such ascrack initiation at non-metallic inclusions. Much effort has been invested so far in improving thesteel cleanliness. However, these high performance components often do not reach the desiredservice life. Preliminary failure within the guarantee terms still occurs which leads to high warrantycosts. Alternative to improving steel cleanliness, the damage tolerance of high performancecomponents could be increased by inducing the TRIP-effect around the crack tip. Due to high localstrain hardening, martensite transformation occurs. The high compressive stresses related to it coulddelay or stop crack propagation by reducing stress concentrations via plastic deformation. As aresult, rolling-contact fatigue resistance of carburized steels may be increased and preliminaryfailure may be avoided. Part I of this study focuses on modifying the chemical composition ofconventional 18CrNiMo7-6 steel with Al to develop a high-strength, yet ductile matrix with a highwork hardening potential. Dilatometric tests on laboratory melts analyze the possibility of adjustinga microstructure able to produce a TRIP-effect. Both isothermal annealing and Quenching andPartitioning (Q&P) are used to stabilize residual austenite and optimum process routes areidentified.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. D. McVittie, Wind Turbine Gearbox Reliability: The Natute of the Problem, Presentation Gear Engineers, Inc., (2006).

2. A. P. Voskamp, Microstructural Changes during Rolling Contact Fatigue, Dissertation, Technical University Delft, (1997).

3. H. Schlicht, HTM Journal of Heat Treatment and Materials 59 (2004) 363.

4. H. Schlicht, HTM Journal of Heat Treatment and Materials 57 (2002) 174.

5. E. Tonicello, D. Girodin, C. Sidoroff, A. Fazekas, M. Perez, Material Science and Technology 28 (2012) 23.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3