HF-SPHR: Hybrid Features for Sustainable Physical Healthcare Pattern Recognition Using Deep Belief Networks

Author:

Javeed Madiha,Gochoo Munkhjargal,Jalal Ahmad,Kim KibumORCID

Abstract

The daily life-log routines of elderly individuals are susceptible to numerous complications in their physical healthcare patterns. Some of these complications can cause injuries, followed by extensive and expensive recovery stages. It is important to identify physical healthcare patterns that can describe and convey the exact state of an individual’s physical health while they perform their daily life activities. In this paper, we propose a novel Sustainable Physical Healthcare Pattern Recognition (SPHR) approach using a hybrid features model that is capable of distinguishing multiple physical activities based on a multiple wearable sensors system. Initially, we acquired raw data from well-known datasets, i.e., mobile health and human gait databases comprised of multiple human activities. The proposed strategy includes data pre-processing, hybrid feature detection, and feature-to-feature fusion and reduction, followed by codebook generation and classification, which can recognize sustainable physical healthcare patterns. Feature-to-feature fusion unites the cues from all of the sensors, and Gaussian mixture models are used for the codebook generation. For the classification, we recommend deep belief networks with restricted Boltzmann machines for five hidden layers. Finally, the results are compared with state-of-the-art techniques in order to demonstrate significant improvements in accuracy for physical healthcare pattern recognition. The experiments show that the proposed architecture attained improved accuracy rates for both datasets, and that it represents a significant sustainable physical healthcare pattern recognition (SPHR) approach. The anticipated system has potential for use in human–machine interaction domains such as continuous movement recognition, pattern-based surveillance, mobility assistance, and robot control systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3