Intelligent ADL Recognition via IoT-Based Multimodal Deep Learning Framework

Author:

Javeed Madiha1,Mudawi Naif Al2ORCID,Alazeb Abdulwahab2,Almakdi Sultan2ORCID,Alotaibi Saud S.3ORCID,Chelloug Samia Allaoua4ORCID,Jalal Ahmad1

Affiliation:

1. Department of Computer Science, Air University, E-9, Islamabad 44000, Pakistan

2. Department of Computer Science, College of Computer Science and Information System, Najran University, Najran 55461, Saudi Arabia

3. Information Systems Department, Umm Al-Qura University, Makkah 24382, Saudi Arabia

4. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

Abstract

Smart home monitoring systems via internet of things (IoT) are required for taking care of elders at home. They provide the flexibility of monitoring elders remotely for their families and caregivers. Activities of daily living are an efficient way to effectively monitor elderly people at home and patients at caregiving facilities. The monitoring of such actions depends largely on IoT-based devices, either wireless or installed at different places. This paper proposes an effective and robust layered architecture using multisensory devices to recognize the activities of daily living from anywhere. Multimodality refers to the sensory devices of multiple types working together to achieve the objective of remote monitoring. Therefore, the proposed multimodal-based approach includes IoT devices, such as wearable inertial sensors and videos recorded during daily routines, fused together. The data from these multi-sensors have to be processed through a pre-processing layer through different stages, such as data filtration, segmentation, landmark detection, and 2D stick model. In next layer called the features processing, we have extracted, fused, and optimized different features from multimodal sensors. The final layer, called classification, has been utilized to recognize the activities of daily living via a deep learning technique known as convolutional neural network. It is observed from the proposed IoT-based multimodal layered system’s results that an acceptable mean accuracy rate of 84.14% has been achieved.

Funder

Princess Nourah bint Abdulrahman University Researchers

Deanship of Scientific Research at Najran University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3