An Improved Phase Unwrapping Method Based on Hierarchical Networking and Constrained Adjustment

Author:

Mao Wenxiang,Wang Sai,Xu BingORCID,Li ZhiweiORCID,Zhu Yan

Abstract

Accurate phase unwrapping (PU) is a precondition and key for using synthetic aperture radar interferometry (InSAR) technology to successfully invert topography and monitor surface deformations. However, most interferograms are seriously polluted by noise in the low-quality regions, which poses difficulties for PU. Therefore, using the strategy of leveling network adjustment, this paper proposes an improved PU method based on hierarchical networking and constrained adjustment. This method not only limits the phase error transfer of low-quality points, but also takes the PU results of high-quality points as control points and uses the network adjustment method with constraints to unwrap low-quality points, which effectively inhibits the influence of noise and improves the accuracy of unwrapping. Regardless of the unwrapping method used for high-quality points, the unwrapping accuracy of low-quality points can always be improved. Compared with other traditional two-dimensional phase unwrapping workflows, this method can more accurately recover the phase of low-coherence regions only through the interferogram. A simulation experiment showed that the local noise of the interferogram was effectively inhibited, and the PU accuracy of the low-quality regions was improved by 16–46% compared with different traditional methods. For a real-data experiment of mining area with low coherence, the PU result of our proposed method had fewer residues and lower phase standard deviation than traditional methods, further indicating the practicability and robustness of the proposed method. The work in this paper has considerable practical significance for recovering the decoherence phase with serious local noise such as mining centers and groundwater subsidence centers.

Funder

National Science Fund for Distinguished Young Scholars

National Key Research and Development Program of China

National Natural Science Foundation of China

the Innovation Foundation for Postgraduate of Central South University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3