Abstract
Phase unwrapping (PU) is a key program in data processing in the interferometric synthetic aperture radar (InSAR) technique, and its accuracy directly affects the quality of final SAR data products. However, PU in regions with large gradient changes and high noise has always been a difficult problem. To overcome the limitation, this article proposes an adaptive square-root unscented Kalman filter PU method. Specifically, a modified phase gradient estimation (PGE) algorithm is proposed, in which a Butterworth low-pass filter is embedded, and the PGE window can be adaptively adjusted according to phase root-mean-square errors of pixels. Furthermore, the outliers of the PGE results are detected and revised to obtain high-precision vertical and horizontal phase gradients. Finally, the unwrapped phase is calculated by the adaptive square-root unscented Kalman filter method. To the best of our knowledge, this article is the first to combine the modified PGE with an adaptive square-root unscented Kalman filter for PU. Two sets of simulated data and a set of TerraSAR-X/TanDEM-X real data were used for experimental verification. The experimental results demonstrated that the various improvement measures proposed in this article were effective. Additionally, compared with the minimum-cost flow algorithm (MCF), statistical-cost network-flow algorithm (SNAPHU) and unscented Kalman filter PU (UKFPU), the proposed method had better accuracy and model robustness.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Development Fund of the Key Laboratory of Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of P.R. China
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献