Robust Two-Dimensional InSAR Phase Unwrapping via FPA and GAU Dual Attention in ResDANet

Author:

Chen Xiaomao1ORCID,Zhang Shanshan1ORCID,Qin Xiaofeng1,Lin Jinfeng1

Affiliation:

1. Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

Two-dimensional phase unwrapping (2-D PU) is vital for reconstructing Earth’s surface topography and displacement from interferometric synthetic aperture radar (InSAR) data. Conventional algorithms rely on the postulate, but this assumption is often insufficient due to abrupt topographic changes and severe noise. To address this challenge, our research proposes a novel approach utilizing deep convolutional neural networks inspired by the U-Net architecture to estimate phase gradient information. Our approach involves downsampling the input data to extract crucial features, followed by upsampling to restore spatial resolution. We incorporate two attention mechanisms—feature pyramid attention (FPA) and global attention upsample (GAU)—and a residual structure in the network’s structure. Thus, we construct ResDANet (residual and dual attention net). We rigorously train ResDANet utilizing simulated datasets and employ an L1-norm objective function to minimize the disparity between unwrapped phase gradients and those calculated by ResDANet, yielding the final 2-D PU results. The network is rigorously trained using two distinct training strategies and encompassing three types of simulated datasets. ResDANet exhibits excellent robust performance and efficiency on simulated data and real data, such as China’s Three Gorges and an Italian volcano.

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3