Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining
-
Published:2009-06
Issue:6
Volume:61
Page:733-745
-
ISSN:1343-8832
-
Container-title:Earth, Planets and Space
-
language:en
-
Short-container-title:Earth Planet Sp
Author:
Ng Alex Hay-Man,Chang Hsing-Chung,Ge Linlin,Rizos Chris,Omura Makoto
Abstract
Abstract
This paper describes the results from the recently launched SAR satellites for the purpose of subsidence monitoring over underground coal mine sites in the state of New South Wales, Australia, using differential interferometric synthetic aperture radar (DInSAR) technique. The quality of the mine subsidence monitoring results is mainly constrained by noise due to the spatial and temporal decorrelation between the interferometric pair and the phase discontinuities in the interferogram. This paper reports on the analysis of the impact of these two factors on the performance of DInSAR for monitoring ground deformation. Simulations were carried out prior to real data analyses. SAR data acquired using different operating frequencies, for example, X-, C- and L-band, from the TerraSAR-X, ERS-1/2, ENVISAT, JERS-1 and ALOS satellite missions, were examined. The simulation results showed that the new satellites ALOS, TerraSAR-X and COSMO-SkyMed perform much better than the satellites launched before 2006. ALOS and ENVISAT satellite SAR images with similar temporal coverage were searched for the test site. The ALOS PALSAR DInSAR results have been compared to DInSAR results obtained from ENVISAT ASAR data to investigate the performance of both satellites for ground subsidence monitoring. Strong phase discontinuities and decorrelation have been observed in almost all ENVISAT interferograms and hence it is not possible to generate the displacement maps without errors. However these problems are minimal in ALOS PALSAR interferograms due to its spatial resolution and longer wavelength. Hence ALOS PALSAR is preferred for ground subsidence monitoring in areas covered by vegetation and where there is a high rate ground deformation.
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Reference17 articles.
1. Carnec, C., D. Massonnet, and C. King, Two examples of the use of SAR interferometry on displacement fields of small spatial extent, Geophys. Res. Lett., 23(24), 3579–3582, 1996. 2. Chang, H. C., L. Ge, and C. Rizos, Radar interferometry for monitoring land subsidence due to underground water extraction, Spatial Sciences Conference, Melbourne, Australia, 736–743, CD-ROM procs, 12–16 September, 2005. 3. Chen, C. W. and H. A. Zebker, Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models, Geosci. Remote Sensing, IEEE Trans., 40(8), 1709–1719, 2002. 4. Costantini, M., A novel phase unwrapping method based on network programming, Geosci. Remote Sensing, IEEE Trans., 36, 813–818, 1998. 5. Ge, L., H. C. Chang, and C. Rizos, Satellite radar interferometry for mine subsidence monitoring, 22nd Australian Institute of Mine Surveyors Annual Seminar, Wollongong, Australia, paper 5, CD-ROM procs, 18–20 August, 2004.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|