Hybrid Propulsion in SI Engines for New Generation Motorcycles: A Numerical-Experimental Approach to Assess Power Requirements and Emission Performance

Author:

Iodice PaoloORCID,Fornaro EnricoORCID,Cardone MassimoORCID

Abstract

Worldwide mopeds and motorcycles are taking on a growing main role in private mobility with a direct impact on air pollution, particularly in urban contexts of many Asian and European countries. In a preceding experimental investigation, HC and CO emissions were measured in the exhaust of a last-generation motorcycle belonging to the Euro-3 legislative category. Since exhaust emissions and fuel consumption are very sensitive to variations in vehicles instantaneous speed and acceleration, in this research new experimental results are used to recognize the kinematic parameters that cause higher engine-out emissions. In this paper, the hybrid electric propulsion is proposed for motorcycle application to reduce exhaust emissions in particular driving conditions which include high levels of acceleration with resultant rapid steep increase in engine speed. In such operating conditions, an enrichment of the air/fuel mixture is required, which affects the catalyst conversion efficiency. Subsequently, the power requirements and the grade of electrical assistance in such driving situations are calculated by a procedure based on both the measured exhaust emissions and the kinematic parameters of the driving dynamics collected during the experimental tests. Lastly, the share of CO and HC emissions that could be saved utilizing a hybrid motorcycle instead of a conventional thermal motorcycle is estimated through a specific environmental analysis.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3