Evaluation of Electric Vehicle-Dependent Strategy in Addis Ababa, Ethiopia Transport System

Author:

Eticha Tesfamichael Chala1ORCID,Emagnu Yonas Minalu2ORCID

Affiliation:

1. Department of Civil Engineering, College of Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

2. School of Civil and Environmental Engineering, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia

Abstract

This paper assesses the transport system of Addis Ababa, Ethiopia, taking factors such as the number of vehicles, roadway width, speed of vehicles, longitudinal grade, and proportion of both fuel and electrical vehicles by dividing vehicles into seven classes, namely, car, minibus, small bus, coach, small truck, heavy truck, and truck trailer, to determine CO2 emission, CO emission fuel consumption, and electric consumption in addition to the percent to replace ICE vehicles. After selecting eight representative road sections in Addis Ababa city, input data was collected from both primary and secondary sources. Simulation of urban mobility (SUMO) is used to model the existing road transport system and two other scenarios, cases being 20% and 40% replacement of internal combustion engine vehicles by electric vehicles. Among the vehicle types studied under this paper, the SUMO results show that coaches are with the highest CO2 emission, releasing an average amount of 28.442 grams of CO2 every time step, while cars are with the lowest CO2 emission value of 6.542 grams. Minibuses are the top CO emitters, releasing an average of 0.420 grams of CO every time step, and truck trailers emit the smallest CO emission, 0.025 grams. Regarding electric consumption, the truck trailer is the vehicle type with the highest electric consumption, with a value of 2.282 kwh (watthour) consumption every time step, and cars are the least electricity-consuming vehicles, with a value of 0.151 kwh. The fourth point is fuel consumption; besides the high CO2 emission, coaches’ consumption of fuel is leading by 8.946 grams, and cars use 2.087 grams of fuel every time step. Totally, public transport vehicles are responsible for higher emissions and huge fuel consumption. Therefore, if our transport system encourages the penetration of electric vehicles into the road transport system, a healthy and energy-efficient environment is reserved. Again, from a financial and environmental standpoint, the replacement of 40% of ICE vehicles by EVs enhances us with reduced costs and a green environment.

Funder

Addis Ababa Science and Technology University

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Reference22 articles.

1. Transport system: elements, characteristics, types, modes

2. Wikipedia,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3