Water Level Control in the Thermal Power Plant Steam Separator Based on New PID Tuning Method for Integrating Processes

Author:

Kvascev Goran S.ORCID,Djurovic Zeljko M.

Abstract

The paper presents an analysis of water-level control in a thermal power plant (TPP) steam separator. This control structure is vital for the entire plant’s stable, reliable, and efficient operation. This process belongs to processes with an integrator because it concerns a level-control issue, and the control variable is the feedwater flow. Said industrial processes are challenging to control and apply standard methods for tuning the PID controller, so a new procedure has been proposed. A procedure for tuning a PID controller for integrating processes is proposed based on the IFOPDT model, obtained from the wide step response of the process. Based on the process parameters estimated, the tuning of the controller is proposed. Results from the TPP TEKO-B2 (350 MW) are presented as an experimental verification. Compared with standard tuning methods, better results are achieved in the form of rise time and disturbance elimination rate. A significantly less risky and faster experiment for parameter estimation and controller tuning is also obtained. In addition, one adjustable parameter is provided to select the relation between performance and robustness. This method can be applied to various industrial processes with an integrator.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3