Abstract
The sparrow search algorithm (SSA) is a metaheuristic algorithm developed based on the foraging and anti-predatory behavior of sparrow populations. Compared with other metaheuristic algorithms, SSA also suffers from poor population diversity, has weak global comprehensive search ability, and easily falls into local optimality. To address the problems whereby the sparrow search algorithm tends to fall into local optimum and the population diversity decreases in the later stage of the search, an improved sparrow search algorithm (PGL-SSA) based on piecewise chaotic mapping, Gaussian difference variation, and linear differential decreasing inertia weight fusion is proposed. Firstly, we analyze the improvement of six chaotic mappings on the overall performance of the sparrow search algorithm, and we finally determine the initialization of the population by piecewise chaotic mapping to increase the initial population richness and improve the initial solution quality. Secondly, we introduce Gaussian difference variation in the process of individual iterative update and use Gaussian difference variation to perturb the individuals to generate a diversity of individuals so that the algorithm can converge quickly and avoid falling into localization. Finally, linear differential decreasing inertia weights are introduced globally to adjust the weights so that the algorithm can fully traverse the solution space with larger weights in the first iteration to avoid falling into local optimum, and we enhance the local search ability with smaller weights in the later iteration to improve the search accuracy of the optimal solution. The results show that the proposed algorithm has a faster convergence speed and higher search accuracy than the comparison algorithm, the global search capability is significantly enhanced, and it is easier to jump out of the local optimum. The improved algorithm is also applied to the Heating, Ventilation and Air Conditioning (HVAC) system control optimization direction, and the improved algorithm is used to optimize the parameters of the HVAC system Proportion Integral Differential (PID) controller. The results show that the PID controller optimized by the improved algorithm has higher control accuracy and system stability, which verifies the feasibility of the improved algorithm in practical engineering applications.
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Reference37 articles.
1. A novel swarm intelligence optimization approach: Sparrow search algorithm;Xue;Syst. Sci. Control Eng.,2020
2. A Chaos Sparrow Search Algorithm with Logarithmic Spiral and Adaptive Step for Engineering Problems;Tang;Comput. Model. Eng. Sci.,2022
3. Design and application of improved sparrow search algorithm based on sine cosine and firefly perturbation;Ren;Math. Biosci. Eng.,2022
4. Multi-strategy sparrow search algorithm integrating golden sine and curve adaptive;Gao;Appl. Res. Comput.,2022
5. Research on Multistrategy Improved Evolutionary Sparrow Search Algorithm and its Application;Gao;IEEE Access,2022
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献