Application of H∞ Robust Control on a Scaled Offshore Oil and Gas De-Oiling Facility

Author:

Durdevic Petar,Yang ZhenyuORCID

Abstract

The offshore de-oiling process is a vital part of current oil recovery, as it separates the profitable oil from water and ensures that the discharged water contains as little of the polluting oil as possible. With the passage of time, there is an increase in the water fraction in reservoirs that adds to the strain put on these facilities, and thus larger quantities of oil are being discharged into the oceans, which has in many studies been linked to negative effects on marine life. In many cases, such installations are controlled using non-cooperative single objective controllers which are inefficient in handling fluctuating inflows or complicated operating conditions. This work introduces a model-based robust H ∞ control solution that handles the entire de-oiling system and improves the system’s robustness towards fluctuating flow thereby improving the oil recovery and reducing the environmental impacts of the discharge. The robust H ∞ control solution was compared to a benchmark Proportional-Integral-Derivative (PID) control solution and evaluated through simulation and experiments performed on a pilot plant. This study found that the robust H ∞ control solution greatly improved the performance of the de-oiling process.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. British Petroleum and Global Oil 1950–1975: The Challenge of Nationalism;Bamberg,2000

2. Zero emissions of oil in water from offshore oil and gas installations: economic and environmental implications

3. A survey of produced water studies;Stephenson,1992

4. Water control;Bailey;Oilfield Rev.,2000

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3