N2 Fixation, N Transfer, and Land Equivalent Ratio (LER) in Grain Legume–Wheat Intercropping: Impact of N Supply and Plant Density

Author:

Salinas-Roco Sebastian1,Morales-González Amanda1,Espinoza Soledad2,Pérez-Díaz Ricardo3,Carrasco Basilio3,del Pozo Alejandro4ORCID,Cabeza Ricardo A.1ORCID

Affiliation:

1. Laboratory of Plant Nutrition, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Talca, Talca 3460000, Chile

2. Centro Regional de Investigación Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3780000, Chile

3. Centro de Estudios en Alimentos Procesados (CEAP), Talca 3480094, Chile

4. Plant Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca 3460000, Chile

Abstract

Intercropping legumes with cereals can lead to increased overall yield and optimize the utilization of resources such as water and nutrients, thus enhancing agricultural efficiency. Legumes possess the unique ability to acquire nitrogen (N) through both N2 fixation and from the available N in the soil. However, soil N can diminish the N2 fixation capacity of legumes. It is postulated that in intercropping, legumes uptake N mainly through N2 fixation, leaving more soil N available for cereals. The latter, in turn, has larger root systems, allowing it to explore greater soil volume and absorb more N, mitigating its adverse effects on N2 fixation in legumes. The goal of this study was to evaluate how the supply of N affects the intercropping of faba beans (Vicia faba L.) and peas (Pisum sativum L.) with wheat under varying plant densities and N levels. We measured photosynthetic traits, biomass production, the proportion of N derived from air (%Ndfa) in the shoot of the legumes, the N transferred to the wheat, and the land equivalent ratio (LER). The results revealed a positive correlation between soil N levels and the CO2 assimilation rate (An), chlorophyll content, and N balance index (NBI) in wheat. However, no significant effect was observed in legumes as soil N levels increased. Transpiration (E) increased in wheat intercropped with legumes, while stomatal conductance (gs) increased with N addition in all crops. Water use efficiency (WUE) decreased in faba beans intercropped with wheat as N increased, but it showed no significant change in wheat or peas. The shoot dry matter of wheat increased with the addition of N; however, the two legume species showed no significant changes. N addition reduced the %Ndfa of both legume species, especially in monoculture, with peas being more sensitive than faba beans. The intercropping of wheat alleviated N2 fixation inhibition, especially at high wheat density and increased N transfer to wheat, particularly with peas. The LER was higher in the intercropping treatments, especially under limited N conditions. It is concluded that in the intercropping of wheat with legumes, the N2 fixation inhibition caused by soil N is effectively reduced, as well as there being a significant N transfer from the legume to the wheat, with both process contributing to increase LER.

Funder

ANID Chile FONDECYT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3