Camelina Intercropping with Pulses a Sustainable Approach for Land Competition between Food and Non-Food Crops

Author:

Pagani Elena1ORCID,Zanetti Federica1ORCID,Ferioli Federico2,Facciolla Erika1,Monti Andrea1

Affiliation:

1. Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Viale Fanin 44, 40127 Bologna, Italy

2. Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Food Science University Campus, Piazza Goidanich 60, 47521 Cesena, Italy

Abstract

With increasing global attention toward the need for mitigating climate change, the transition to sustainable energy sources has become an essential priority. Introducing alternative oilseed crops, such as camelina (Camelina sativa L.), into intercropping systems with staple food crops can mitigate ILUC (indirect land use change) and their negative impact on biofuel production. The present study compared camelina + field pea intercropping (ICw + IP, winter sowing) and camelina + lentil intercropping (ICs + IL, spring sowing) with their respective single crops regarding weed control, soil coverage, yields, and camelina seed quality (1000-seed weight, oil, and fatty acid composition). The comparison between different cropping systems was conducted using a one-way ANOVA. Both intercropping improved weed control at an early stage but no differences in soil coverage were found. Camelina seed yield was negatively affected by the presence of peas, whereas the pulse was unaffected. Conversely, camelina seed yield was not affected when intercropped with lentils while lentils reduced their yield in the intercropping. Furthermore, when camelina was intercropped with lentils, a significant increase was reported in 1000-seed weight and α -linolenic acid (C18:3) compared with the sole-camelina. However, both intercropping systems had a land equivalent ratio (LER, based on total seed yield at maturity) higher than one. Defining the best combination of crops and the optimal sowing and harvesting settings remain key to increasing the adoption of intercropping systems by farmers.

Funder

European Union

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3