Growth of Multi-Layer hBN on Ni(111) Substrates via MOCVD

Author:

Siegel Gene,Gryzbowcki Gordon,Hilton Albert,Muratore Christopher,Snure Michael

Abstract

In this paper we demonstrate a metal organic chemical vapor deposition (MOCVD) process for growth of few layer hBN films on Ni(111) on sapphire substrates using triethylborane (TEB) and ammonia (NH3). Ni(111) was selected as a substrate due to its symmetry and close lattice matching to hBN. Using atomic force microscopy (AFM) we find hBN is well aligned to the Ni below with in plane alignment between the hBN zig zag edge and the <110> of Ni. We further investigate the growth process exploring interaction between precursors and the Ni(111) substrate. Under TEB pre-exposure Ni-B and graphitic compounds form which disrupts the formation of layered phase pure hBN; while NH3 pre-exposure results in high quality films. Tunnel transport of films was investigated by conductive-probe AFM demonstrating films to be highly resistive. These findings improve our understanding of the chemistry and mechanisms involved in hBN growth on metal surfaces by MOCVD.

Funder

Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3