A Dataset of Overshooting Cloud Top from 12-Year CloudSat/CALIOP Joint Observations

Author:

Li Haoyang,Wei Xiaocheng,Min MinORCID,Li Bo,Nong Ziqi,Chen LinORCID

Abstract

A strong convective storm is a disastrous weather system with a small spatio-temporal scale. It often occurs suddenly and can cause huge disasters. Thus, it is necessary to improve the forecast accuracy of strong convective storms. Overshooting cloud top (OT) is the product of strong updrafts in convective storms, which can penetrate the tropopause and enter the lower stratosphere. OT is closely related to severe weather and can influence water vapor transport and the material exchange between the troposphere and stratosphere. Therefore, the timely detection of OT can help improve the accuracy of forecasting. In this study, we develop a new objective OT detection algorithm based on geostationary satellite observations from 2006 to 2017. The accuracy of the new algorithm in identifying OT is verified by manually comparing it with the radar echo images and the cloud images of MODIS 250 m. Then, the OT is statistically analyzed in a long time series. It is found that OT events are mainly concentrated in equatorial and low latitude regions, with higher frequency in summer. There are obvious differences between OT events on land and sea. Additionally, this dataset also reveals the close connection between the seasonal shift of OT and the seasonal average precipitation distribution around the globe. This study provides a scientific basis for determining the geographical characteristics of OT frequency and explores the application of this OT objective detection algorithm in the operational forecast of strong convective weather. We hope this study can benefit OT monitoring in operational weather forecasting.

Funder

National Natural Science Foundation of China

Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3