CNN-Based Laue Spot Morphology Predictor for Reliable Crystallographic Descriptor Estimation

Author:

Kirstein Tom1,Petrich Lukas1,Purushottam Raj Purohit Ravi Raj Purohit2ORCID,Micha Jean-Sébastien3,Schmidt Volker1

Affiliation:

1. Institute of Stochastics, Ulm University, 89096 Ulm, Germany

2. Université Grenoble Alpes, CEA, IRIG, MEM, 38000 Grenoble, France

3. Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France

Abstract

Laue microdiffraction is an X-ray diffraction technique that allows for the non-destructive acquisition of spatial maps of crystallographic orientation and the strain state of (poly)crystalline specimens. To do so, diffraction patterns, consisting of thousands of Laue spots, are collected and analyzed at each location of the spatial maps. Each spot of these so-called Laue patterns has to be accurately characterized with respect to its position, size and shape for subsequent analyses including indexing and strain analysis. In the present paper, several approaches for estimating these descriptors that have been proposed in the literature, such as methods based on image moments or function fitting, are reviewed. However, with the increasing size and quantity of Laue image data measured at synchrotron sources, some datasets become unfeasible in terms of computational requirements. Moreover, for irregular Laue spots resulting, e.g., from overlaps and extended crystal defects, the exact shape and, more importantly, the position are ill-defined. To tackle these shortcomings, a procedure using convolutional neural networks is presented, allowing for a significant acceleration of the characterization of Laue spots, while simultaneously estimating the quality of a Laue spot for further analyses. When tested on unseen Laue spots, this approach led to an acceleration of 77 times using a GPU while maintaining high levels of accuracy.

Funder

ANR

SCHM

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3