Using convolutional neural networks for stereological characterization of 3D hetero-aggregates based on synthetic STEM data

Author:

Fuchs Lukas,Kirstein Tom,Mahr Christoph,Furat OrkunORCID,Baric Valentin,Rosenauer Andreas,Mädler Lutz,Schmidt Volker

Abstract

Abstract The 3D nano/microstructure of materials can significantly influence their macroscopic properties. In order to enable a better understanding of such structure-property relationships, 3D microscopy techniques can be deployed, which are however often expensive in both time and costs. Often 2D imaging techniques are more accessible, yet they have the disadvantage that the 3D nano/microstructure of materials cannot be directly retrieved from such measurements. The motivation of this work is to overcome the issues of characterizing 3D structures from 2D measurements for hetero-aggregate materials. For this purpose, a method is presented that relies on machine learning combined with methods of spatial stochastic modeling for characterizing the 3D nano/microstructure of materials from 2D data. More precisely, a stochastic model is utilized for the generation of synthetic training data. This kind of training data has the advantage that time-consuming experiments for the synthesis of differently structured materials followed by their 3D imaging can be avoided. More precisely, a parametric stochastic 3D model is presented, from which a wide spectrum of virtual hetero-aggregates can be generated. Additionally, the virtual structures are passed to a physics-based simulation tool in order to generate virtual scanning transmission electron microscopy (STEM) images. The preset parameters of the 3D model together with the simulated STEM images serve as a database for the training of convolutional neural networks, which can be used to determine the parameters of the underlying 3D model and, consequently, to predict 3D structures of hetero-aggregates from 2D STEM images. Furthermore, an error analysis is performed with respect to structural descriptors, e.g. the hetero-coordination number. The proposed method is applied to image data of TiO2-WO3 hetero-aggregates, which are highly relevant in photocatalysis processes. However, the proposed method can be transferred to other types of aggregates and to different 2D microscopy techniques. Consequently, the method is relevant for industrial or laboratory setups in which product quality is to be quantified by means of inexpensive 2D image acquisition.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3