Determination of droplet size from wide-angle light scattering image data using convolutional neural networks

Author:

Kirstein Tom,Aßmann Simon,Furat OrkunORCID,Will Stefan,Schmidt Volker

Abstract

Abstract Wide-angle light scattering (WALS) offers the possibility of a highly temporally and spatially resolved measurement of droplets in spray-based methods for nanoparticle synthesis. The size of these droplets is a critical variable affecting the final properties of synthesized materials such as hetero-aggregates. However, conventional methods for determining droplet sizes from WALS image data are labor-intensive and may introduce biases, particularly when applied to complex systems like spray flame synthesis. To address these challenges, we introduce a fully automatic machine learning-based approach that employs convolutional neural networks (CNNs) in order to streamline the droplet sizing process. This CNN-based methodology offers further advantages: it requires few manual labels and can utilize transfer learning, making it a promising alternative to conventional methods, specifically with respect to efficiency. To evaluate the performance of our machine learning models, we consider WALS data from an ethanol spray flame process at various heights above burner surface, where the models are trained and cross-validated on a large dataset comprising nearly 35000 WALS images.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3