An Adaptive Rank Aggregation-Based Ensemble Multi-Filter Feature Selection Method in Software Defect Prediction

Author:

Balogun Abdullateef O.ORCID,Basri Shuib,Capretz Luiz FernandoORCID,Mahamad SaipunidzamORCID,Imam Abdullahi A.,Almomani Malek A.,Adeyemo Victor E.ORCID,Kumar GaneshORCID

Abstract

Feature selection is known to be an applicable solution to address the problem of high dimensionality in software defect prediction (SDP). However, choosing an appropriate filter feature selection (FFS) method that will generate and guarantee optimal features in SDP is an open research issue, known as the filter rank selection problem. As a solution, the combination of multiple filter methods can alleviate the filter rank selection problem. In this study, a novel adaptive rank aggregation-based ensemble multi-filter feature selection (AREMFFS) method is proposed to resolve high dimensionality and filter rank selection problems in SDP. Specifically, the proposed AREMFFS method is based on assessing and combining the strengths of individual FFS methods by aggregating multiple rank lists in the generation and subsequent selection of top-ranked features to be used in the SDP process. The efficacy of the proposed AREMFFS method is evaluated with decision tree (DT) and naïve Bayes (NB) models on defect datasets from different repositories with diverse defect granularities. Findings from the experimental results indicated the superiority of AREMFFS over other baseline FFS methods that were evaluated, existing rank aggregation based multi-filter FS methods, and variants of AREMFFS as developed in this study. That is, the proposed AREMFFS method not only had a superior effect on prediction performances of SDP models but also outperformed baseline FS methods and existing rank aggregation based multi-filter FS methods. Therefore, this study recommends the combination of multiple FFS methods to utilize the strength of respective FFS methods and take advantage of filter–filter relationships in selecting optimal features for SDP processes.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference81 articles.

1. Comparative Analysis of Selected Heterogeneous Classifiers for Software Defects Prediction Using Filter-Based Feature Selection Methods

2. Object-oriented measures as testability indicators: An empirical study;Bajeh;J. Eng. Sci. Technol.,2020

3. Software defect prediction: A multi-criteria decision-making approach

4. Bug severity classification using semantic feature with convolution neural network;Chauhan,2020

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3