HYBRID BINARY WHALE OPTIMIZATION ALGORITHM BASED ON TAPER SHAPED TRANSFER FUNCTION FOR SOFTWARE DEFECT PREDICTION

Author:

Hamed Alnaish Zakaria A.ORCID,Hasoon Safwan O.ORCID

Abstract

Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects measuring software's reliability. Additionally, the high dimensionality of the features has a direct effect on the accuracy of SDP models. The objective of this paper is to propose a hybrid binary whale optimization algorithm (BWOA) based on taper-shape transfer functions for solving feature selection problems and dimension reduction with a KNN classifier as a new software defect prediction method. In this paper, the values of a real vector that represents the individual encoding have been converted to binary vector by using the four types of Taper-shaped transfer functions to enhance the performance of BWOA to reduce the dimension of the search space. The performance of the suggested method (T-BWOA-KNN) was evaluated using eleven standard software defect prediction datasets from the PROMISE and NASA repositories depending on the K-Nearest Neighbor (KNN) classifier. Seven evaluation metrics have been used to assess the effectiveness of the suggested method. The experimental results have shown that the performance of T-BWOA-KNN produced promising results compared to other methods including ten methods from the literature, four types of T-BWOA with the KNN classifier. In addition, the obtained results are compared and analyzed with other methods from the literature in terms of the average number of selected features (SF) and accuracy rate (ACC) using the Kendall W test. In this paper, a new hybrid software defect prediction method called T-BWOA-KNN has been proposed which is concerned with the feature selection problem. The experimental results have proved that T-BWOA-KNN produced promising performance compared with other methods for most datasets.

Publisher

Politechnika Lubelska

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3