Software defect prediction: A multi-criteria decision-making approach

Author:

Balogun A.O.,Bajeh A.O.,Mojeed H.A.,Akintola A.G.

Abstract

Failure of software systems as a result of software testing is very much rampant as modern software systems are large and complex. Software testing which is an integral part of the software development life cycle (SDLC), consumes both human and capital resources. As such, software defect prediction (SDP) mechanisms are deployed to strengthen the software testing phase in SDLC by predicting defect prone modules or components in software systems. Machine learning models are used for developing the SDP models with great successes achieved. Moreover, some studies have highlighted that a combination of machine learning models as a form of an ensemble is better than single SDP models in terms of prediction accuracy. However, the efficiency of machine learning models can change with diverse predictive evaluation metrics. Thus, more studies are needed to establish the effectiveness of ensemble SDP models over single SDP models. This study proposes the deployment of Multi-Criteria Decision Method (MCDM) techniques to rank machine learning models. Analytic Network Process (ANP) and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) which are types of MCDM techniques are deployed on 9 machine learning models with 11 performance evaluation metrics and 11 software defects datasets. The experimental results showed that ensemble SDP models are best appropriate SDP models as Boosted SMO and Boosted PART ranked highest for each of the MCDM techniques. Besides, the experimental results also validated the stand of not considering accuracy as the only performance evaluation metrics for SDP models. Conclusively, more performance metrics other than predictive accuracy should be considered when ranking and evaluating machine learning models. Keywords: Ensemble; Multi-Criteria Decision Method; Software Defect Prediction

Publisher

African Journals Online (AJOL)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel framework based on the multi-label classification for dynamic selection of classifiers;International Journal of Machine Learning and Cybernetics;2023-01-02

2. Software Defect Prediction Technology Based on Fuzzy Support Vector Machine;2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2022-12-02

3. Visual Signifier for Large Multi-Touch Display to Support Interaction in a Virtual Museum Interface;Applied Sciences;2022-11-04

4. Empirical Analysis of Data Sampling-Based Ensemble Methods in Software Defect Prediction;Computational Science and Its Applications – ICCSA 2022 Workshops;2022

5. An Empirical Study on Data Sampling Methods in Addressing Class Imbalance Problem in Software Defect Prediction;Software Engineering Perspectives in Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3