Influence of Charging Losses on Energy Consumption and CO2 Emissions of Battery-Electric Vehicles

Author:

Reick BenediktORCID,Konzept Anja,Kaufmann André,Stetter Ralf,Engelmann Danilo

Abstract

Due to increasing sales figures, the energy consumption of battery-electric vehicles is moving further into focus. In addition to efficient driving, it is also important that the energy losses during AC charging are as low as possible for a sustainable operation. In many situations it is not possible or necessary to charge the vehicle with the maximum charging power e.g., in apartment buildings. The influence of the charging mode (number of phases used, in-cable-control-box or used wallbox, charging current) on the charging efficiency is often unknown. In this work, the energy consumption of two electric vehicles in the Worldwide Harmonized Light-Duty Vehicles Test Cycle is presented. In-house developed measurement technology and vehicle CAN data are used. A detailed breakdown of charging losses, drivetrain efficiency, and overall energy consumption for one of the vehicles is provided. Finally, the results are discussed with reference to avoidable CO2 emissions. The charging losses of the tested vehicles range from 12.79 to 20.42%. Maximum charging power with three phases and 16 A charging current delivers the best efficiencies. Single-phase charging was considered down to 10 A, where the losses are greatest. The drivetrain efficiency while driving is 63.88% on average for the WLTC, 77.12% in the “extra high” section and 23.12% in the “low” section. The resulting energy consumption for both vehicles is higher than the OEM data given (21.6 to 44.9%). Possible origins for the surplus on energy consumption are detailed. Over 100,000 km, unfavorable charging results in additional CO2 emissions of 1.24 t. The emissions for an assumed annual mileage of 20,000 km are three times larger than for a class A+ refrigerator. A classification of charging modes and chargers thus appears to make sense. In the following work, efficiency improvements in the charger as well as DC charging will be proposed.

Publisher

MDPI AG

Reference14 articles.

1. Worldwide harmonized Light vehicles Test Procedure,2014

2. Stromverbrauch Elektroautos: Aktuelle Modelle im ADAC Testhttps://www.adac.de/rund-ums-fahrzeug/tests/elektromobilitaet/stromverbrauch-elektroautos-adac-test/

3. ADAC Weist auf Teils Erhebliche Ladeverluste Hinhttps://www.electrive.net/2020/07/23/ladeverluste-laut-adac-oft-hoeher-als-angegeben/

4. Electric Powertrain;Hayes,2018

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3