Incorporating a Load-Shifting Algorithm for Optimal Energy Storage Capacity Design in Smart Homes

Author:

Khwanrit Ruengwit12ORCID,Lim Yuto1,Javaid Saher1ORCID,Charoenlarpnopparut Chalie2ORCID,Tan Yasuo1ORCID

Affiliation:

1. School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan

2. School of Information, Computer, and Communication Technology (ICT), Sirindhorn International Institute of Technology, Thammasat University, Khlong Luang 12120, Pathum Thani, Thailand

Abstract

In today’s power system landscape, renewable energy (RE) resources play a pivotal role, particularly within the residential sector. Despite the significance of these resources, the intermittent nature of RE resources, influenced by variable weather conditions, poses challenges to their reliability as energy resources. Addressing this challenge, the integration of an energy storage system (ESS) emerges as a viable solution, enabling the storage of surplus energy during peak-generation periods and subsequent release during shortages. One of the great challenges of ESSs is how to design ESSs efficiently. This paper focuses on a distributed power-flow system within a smart home environment, comprising uncontrollable power generators, uncontrollable loads, and multiple energy storage units. To address the challenge of minimizing energy loss in ESSs, this paper proposes a novel approach, called energy-efficient storage capacity with loss reduction (SCALE) scheme, that combines multiple-load power-flow assignment with a load-shifting algorithm to minimize energy loss and determine the optimal energy storage capacity. The optimization problem for optimal energy storage capacity is formalized using linear programming techniques. To validate the proposed scheme, real experimental data from a smart home environment during winter and summer seasons are employed. The results demonstrate the efficacy of the proposed algorithm in significantly reducing energy loss, particularly under winter conditions, and determining optimal energy storage capacity, with reductions of up to 11.4% in energy loss and up to 62.1% in optimal energy storage capacity.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3