Effect of an Organic Fertilizer of Ganoderma lucidum Residue on the Physical and Chemical Properties and Microbial Communities of Saline Alkaline Soil

Author:

Deng Pan-Bo1,Guo Li-Peng1,Yang Hui-Ting1,Leng Xiao-Yun12,Wang Yue-Ming3,Bi Jie12,Shi Chun-Fang12

Affiliation:

1. College of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China

2. Inner Mongolia Key Laboratory for Biomass–Energy Conversion, Baotou 014010, China

3. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

Saline-alkali land is the main reserve soil resource. The amount of arable farmland soil can be increased through improvement and utilization of saline-alkali land. Bio-organic fertilizer is an effective saline-alkali soil conditioner, but there are few studies on the improvement of saline-alkali soil with traditional Chinese medicine residues (TCMRs). In this study, an organic fertilizer made from Ganoderma lucidum residue (GLR) was mixed with saline-alkali soil at different proportions; physicochemical properties, enzyme activity, and microbial community characteristics of the soil were investigated. The results showed that the soil pH, as well as bulk density and electrical conductivity were significantly reduced, while the soil moisture content and porosity were significantly increased after the GLR organic fertilizer incorporation. Soil invertase and soil amylase activities significantly increased, as well as the diversity and richness of the soil microbial community structure. The abundance of the dominant phyla, Bacteroidota, Actinobacteriota, Chloroflexi, Firmicutes, and Basidiomycota, increased, while the abundance of the dominant Proteobacteria and Ascomycota phyla decreased. The best improvement effect is obtained when the application ratio of GLR organic fertilizer is 25%. The findings showed that TCMRs have positive application prospects in saline-alkali soil improvement.

Funder

Science and Technology Plan Project of Inner Mongolia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3