Hydrochar Utilization for Saline‐Alkali Soil Amelioration and Its Carbon Sequestration Potential Assessment

Author:

Shen Jia12,Jiang Zili12,Tang Zhichao12,Guo Fanke12,Shao Hongyun12,Ruan Xiuxiu12ORCID

Affiliation:

1. School of Environmental and Chemical Engineering Shanghai University No. 99 Shangda Road Shanghai 200444 P. R. China

2. Center of green urban mining & industry ecology Shanghai University No. 99 Shangda Road Shanghai 200444 P. R. China

Abstract

AbstractFor the current situation of saline‐alkali soil amelioration, it is urgent to explore a multi‐objective amelioration strategy involving crop income increase and environmental benefits. This study used pine‐needle hydrochar to ameliorate saline‐alkali soil and conducted column and pot experiments to investigate its effects on soil properties and crop growth. And the environmental advantages of hydrochar are evaluated through Life Cycle Assessment (LCA). The electrical conductivity, exchangeable sodium percentage, and pH of saline‐alkali soil ameliorated with hydrochar using the column elution method are reduced by 60%, 58%, and 1.2 pH units, respectively, compared to the original soil. Also, the gene copy number of the ameliorated soil has doubled according to qPCR determination. Pot experiment results show that the root length, fresh weight, and germination rate of wheatgrass are increased by 107, 75, and 20%, respectively. These results demonstrated that the exchange of Na+ with H+ released from hydrochar reduced the soil alkalinity and the viability of organisms is enhanced. Moreover, based on this study's data including the hydrochar dosage and wheatgrass yield, the LCA results showed 3.7 × 109 t CO2e carbon sequestration potential and significant environmental benefits.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3