Effects of Organic Fertilizer with Different Degrees of Maturity on Bacteria in Saline–Alkali Soil

Author:

Bai Hongmei12,Liu Meiying1,Jing Yupeng2,Li Yajie3,Chen Shuhui1,Xue Guoping2,Wang Jianguo2,Suo Quanyi1,Jiang Wei2

Affiliation:

1. College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Inner Mongolia Academy of Agricultural & Animal Husbandry Science, Hohhot 010031, China

3. Erdos Forest Farm, Ordos 017000, China

Abstract

Soil microorganisms are important components of soil ecosystems, and their diversity plays an important role in maintaining their functional stability. Organic fertilizer is an important measure for improving soil fertility in agronomic practice. The effects of organic fertilizer on soil microbial diversity and community structure are different with different degrees of maturation. In this study, uncomposted organic fertilizer (R), high-temperature organic fertilizer (H), cooling organic fertilizer (C), and decomposed organic fertilizer (D) were applied, and the 16S rRNA gene sequences of bacteria in soil were analyzed via high-throughput sequencing technology to understand the effects of organic fertilizer with different degrees of maturation on bacterial diversity and community structure in saline soil. Compared with no fertilization, the uncomposted organic fertilizer, high-temperature organic fertilizer, and decomposed organic fertilizer treatments significantly reduced soil bacterial diversity: the decomposed organic fertilizer treatment significantly reduced soil bacterial richness, the cooling organic fertilizer treatment had no significant effect on soil bacterial diversity and bacterial richness, Proteobacteria representing soil nutrients significantly increased under the cooling organic fertilizer treatment, and the relative abundance of Firmicutes significantly decreased. These four organic fertilizers, with different degrees of maturation, significantly increased the beneficial bacterium Bacillus and nitrile-based degrading bacteria but also significantly increased the potential pathogenicity of the soil, and there was no significant difference between the four treatments. In addition, during a cooling period, the organic fertilizer treatment helped to increase the population of oxidative-stress-tolerant bacteria. The application of organic fertilizer during a cooling period to saline–alkali soil is more helpful in improving its nutrient levels.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3