Optimal Growth Conditions for Forming c-Axis (002) Aluminum Nitride Thin Films as a Buffer Layer for Hexagonal Gallium Nitride Thin Films Produced with In Situ Continual Radio Frequency Sputtering

Author:

Liu Wei-ShengORCID,Gururajan BalajiORCID,Wu Sui-Hua,Huang Li-Cheng,Chi Chung-Kai,Jiang Yu-Lun,Kuo Hsing-Chun

Abstract

Aluminum nitride (AlN) thin-film materials possess a wide energy gap; thus, they are suitable for use in various optoelectronic devices. In this study, AlN thin films were deposited using radio frequency magnetron sputtering with an Al sputtering target and N2 as the reactive gas. The N2 working gas flow rate was varied among 20, 30, and 40 sccm to optimize the AlN thin film growth. The optimal AlN thin film was produced with 40 sccm N2 flow at 500 W under 100% N2 gas and at 600 °C. The films were studied using X-ray diffraction and had (002) phase orientation. X-ray photoelectron spectroscopy was used to determine the atomic content of the optimal film to be Al, 32%; N, 52%; and O, 12% at 100 nm beneath the surface of the thin film. The film was also investigated through atomic force microscopy and had a root mean square roughness of 2.57 nm and a hardness of 76.21 GPa. Finally, in situ continual sputtering was used to produce a gallium nitride (GaN) layer on Si with the AlN thin film as a buffer layer. The AlN thin films investigated in this study have excellent material properties, and the proposed process could be a less expensive method of growing high-quality GaN thin films for various applications in GaN-based power transistors and Si integrated circuits.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3