A Performance Comparison of CNN Models for Bean Phenology Classification Using Transfer Learning Techniques

Author:

Ibarra-Pérez Teodoro1ORCID,Jaramillo-Martínez Ramón1ORCID,Correa-Aguado Hans C.1,Ndjatchi Christophe1ORCID,Martínez-Blanco Ma. del Rosario2ORCID,Guerrero-Osuna Héctor A.3ORCID,Mirelez-Delgado Flabio D.1ORCID,Casas-Flores José I.4,Reveles-Martínez Rafael1ORCID,Hernández-González Umanel A.1

Affiliation:

1. Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ), Zacatecas 98160, Mexico

2. Laboratorio de Inteligencia Artificial Avanzada (LIAA), Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico

3. Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico

4. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas (INIFAP), Zacatecas 98500, Mexico

Abstract

The early and precise identification of the different phenological stages of the bean (Phaseolus vulgaris L.) allows for the determination of critical and timely moments for the implementation of certain agricultural activities that contribute in a significant manner to the output and quality of the harvest, as well as the necessary actions to prevent and control possible damage caused by plagues and diseases. Overall, the standard procedure for phenological identification is conducted by the farmer. This can lead to the possibility of overlooking important findings during the phenological development of the plant, which could result in the appearance of plagues and diseases. In recent years, deep learning (DL) methods have been used to analyze crop behavior and minimize risk in agricultural decision making. One of the most used DL methods in image processing is the convolutional neural network (CNN) due to its high capacity for learning relevant features and recognizing objects in images. In this article, a transfer learning approach and a data augmentation method were applied. A station equipped with RGB cameras was used to gather data from images during the complete phenological cycle of the bean. The information gathered was used to create a set of data to evaluate the performance of each of the four proposed network models: AlexNet, VGG19, SqueezeNet, and GoogleNet. The metrics used were accuracy, precision, sensitivity, specificity, and F1-Score. The results of the best architecture obtained in the validation were those of GoogleNet, which obtained 96.71% accuracy, 96.81% precision, 95.77% sensitivity, 98.73% specificity, and 96.25% F1-Score.

Funder

Instituto Politécnico Nacional

Publisher

MDPI AG

Reference48 articles.

1. FAO (2023, December 11). Food and Agriculture Organization of the United Nations International Year of Plant Health. Available online: https://www.fao.org/plant-health-2020/about/en/.

2. Velia, A., Garay, A., Alberto, J., Gallegos, A., and Muro, L.R. (2021). El Cultivo Del Frijol Presente y Futuro Para México, INIFAP.

3. Climate Change and Food Security;Gregory;Philos. Trans. R. Soc. B Biol. Sci.,2005

4. Climate Change, Plant Diseases and Food Security: An Overview;Chakraborty;Plant Pathol.,2011

5. Mutengwa, C.S., Mnkeni, P., and Kondwakwenda, A. (2023). Climate-Smart Agriculture and Food Security in Southern Africa: A Review of the Vulnerability of Smallholder Agriculture and Food Security to Climate Change. Sustainability, 15.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3