Wheat Leaf Disease Detection: A Lightweight Approach with Shallow CNN Based Feature Refinement

Author:

Jouini Oumayma12ORCID,Aoueileyine Mohamed Ould-Elhassen1ORCID,Sethom Kaouthar1,Yazidi Anis3ORCID

Affiliation:

1. Innov’COM Laboratory, Higher School of Communication of Tunis (SUPCOM), Technopark Elghazala, Raoued, Ariana 2083, Tunisia

2. National Engineering School of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia

3. Department of Computer Science, OsloMet–Oslo Metropolitan University, 0176 Oslo, Norway

Abstract

Improving agricultural productivity is essential due to rapid population growth, making early detection of crop diseases crucial. Although deep learning shows promise in smart agriculture, practical applications for identifying wheat diseases in complex backgrounds are limited. In this paper, we propose CropNet, a hybrid method that utilizes Red, Green, and Blue (RGB) imaging and a transfer learning approach combined with shallow convolutional neural networks (CNN) for further feature refinement. To develop our customized model, we conducted an extensive search for the optimal deep learning architecture. Our approach involves freezing the pre-trained model for feature extraction and adding a custom trainable CNN layer. Unlike traditional transfer learning, which typically uses trainable dense layers, our method integrates a trainable CNN, deepening the architecture. We argue that pre-trained features in transfer learning are better suited for a custom shallow CNN followed by a fully connected layer, rather than being fed directly into fully connected layers. We tested various architectures for pre-trained models including EfficientNetB0 and B2, DenseNet, ResNet50, MobileNetV2, MobileNetV3-Small, and Inceptionv3. Our approach combines the strengths of pre-trained models with the flexibility of custom architecture design, offering efficiency, effective feature extraction, customization options, reduced overfitting, and differential learning rates. It distinguishes itself from classical transfer learning techniques, which typically fine-tune the entire pre-trained network. Our aim is to provide a lightweight model suitable for resource-constrained environments, capable of delivering outstanding results. CropNet achieved 99.80% accuracy in wheat disease detection with reduced training time and computational cost. This efficient performance makes CropNet promising for practical implementation in resource-constrained agricultural settings, benefiting farmers and enhancing production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3