Pattern Classification of an Onion Crop (Allium Cepa) Field Using Convolutional Neural Network Models

Author:

López-Martínez Manuel de Jesús1ORCID,Díaz-Flórez Germán1ORCID,Villagrana-Barraza Santiago1,Castañeda-Miranda Celina L.12,Solís-Sánchez Luis Octavio12ORCID,Ortíz-Esquivel Diana I.3ORCID,de la Rosa-Vargas José I.3,Olvera-Olvera Carlos A.1ORCID

Affiliation:

1. Laboratorio de Invenciones Aplicadas a la Industria (LIAI), Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico

2. Laboratorio de Inteligencia Artificial Avanzada (LIAA), Unidad Académica de Ingeniería Eléctrica, Posgrado en Ingeniería y Tecnología Aplicada, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico

3. Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Zacatecas 98160, Mexico

Abstract

Agriculture is an area that currently benefits from the use of new technologies and techniques, such as artificial intelligence, to improve production in crop fields. Zacatecas is one of the states producing the most onions in the northeast region of Mexico. Identifying and determining vegetation, soil, and humidity zones could help solve problems such as irrigation demands or excesses, identify spaces with different levels of soil homogeneity, and estimate the yield or health of the crop. This study examines the application of artificial intelligence through the use of deep learning, specifically convolutional neural networks, to identify the patterns that can be found in a crop field, in this case, vegetation, soil, and humidity zones. To extract the mentioned patterns, the K-nearest neighbor algorithm was used to pre-process images taken using unmanned aerial vehicles and form a dataset composed of 3672 images of vegetation, soil, and humidity (1224 for each class). A total of six convolutional neural network models were used to identify and classify the patterns, namely Alexnet, DenseNet, VGG16, SqueezeNet, MobileNetV2, and Res-Net18. Each model was evaluated with the following validation metrics: accuracy, F1-score, precision, and recall. The results showed a variation in performance between 90% and almost 100%. Alexnet obtained the highest metrics with an accuracy of 99.92%, while MobileNetV2 had the lowest accuracy of 90.85%. Other models, such as DenseNet, VGG16, SqueezeNet, and ResNet18, showed an accuracy of between 92.02% and 98.78%. Furthermore, our study highlights the importance of adopting artificial intelligence in agriculture, particularly in the management of onion fields in Zacatecas, Mexico. The findings can help farmers and agronomists make more informed and efficient decisions, which can lead to greater production and sustainability in local agriculture.

Publisher

MDPI AG

Reference50 articles.

1. Onion Crop Monitoring with Multispectral Imagery using Deep Neural Network;Naseer;Int. J. Adv. Comput. Sci. Appl.,2021

2. (2024, May 14). Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize.

3. La cebolla mexicana: Un análisis de competitividad en el mercado estadounidense, 2002–2013;Región Soc.,2017

4. (2024, May 10). Gobierno de México. Available online: https://www.gob.mx/agricultura/prensa/aporta-mexico-una-de-cada-50-toneladas-de-cebolla-que-se-consumen-en-el-mundo?idiom=es.

5. Evaluation of Onion Crop Production, Management Techniques and Economic Status in Balochistan, Pakistan;Malik;J. Agron.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3