A Novel Shipyard Production State Monitoring Method Based on Satellite Remote Sensing Images

Author:

Qin Wanrou1,Song Yan12,Zhu Haitian34,Yu Xinli5,Tu Yuhong6ORCID

Affiliation:

1. School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China

2. Institute for Natural Disaster Risk Prevention and Emergency Management, China University of Geosciences (Wuhan), Wuhan 430074, China

3. Engineering with the Remote Sensing Monitoring Department of Sea Area and Islands, National Satellite Ocean Application Service, Beijing 100081, China

4. Key Laboratory of Space Ocean Remote Sensing and Application, Beijing 100081, China

5. Qilu Aerospace Information Research Institute, Jinan 250101, China

6. College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

Monitoring the shipyard production state is of great significance to shipbuilding industry development and coastal resource utilization. In this article, it is the first time that satellite remote sensing (RS) data is utilized to monitor the shipyard production state dynamically and efficiently, which can make up for the traditional production state data collection mode. According to the imaging characteristics of optical remote sensing images in shipyards with a different production state, the characteristics are analyzed to establish reliable production state evidence. Firstly, in order to obtain the characteristics of the production state of optical remote sensing data, the high-level semantic information in the shipyard is extracted by transfer learning convolutional neural networks (CNNs). Secondly, in the evidence fusion, for the conflict evidence from the core sites of the shipyard, an improved DS evidence fusion method is proposed, which constructs the correlation metric to measure the degree of conflict in evidence and designs the similarity metric to measure the credibility of evidence. Thirdly, the weight of all the evidence is calculated according to the similarity metric to correct the conflict evidence. The introduction of the iterative idea is motivated by the fact that the fusion result aligns more closely with the desired result, the iterative idea is introduced to correct the fusion result. This method can effectively solve the conflict of evidence and effectively improve the monitoring accuracy of the shipyard production state. In the experiments, the Yangtze River Delta and the Bohai Rim are selected to verify that the proposed method can accurately recognize the shipyard production state, which reveals the potential of satellite RS images in shipyard production state monitoring, and also provides a new research thought perspective for other industrial production state monitoring.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3