Mapping Outburst Floods Using a Collaborative Learning Method Based on Temporally Dense Optical and SAR Data: A Case Study with the Baige Landslide Dam on the Jinsha River, Tibet

Author:

Yang Zhongkang,Wei Jinbing,Deng JianhuiORCID,Gao Yunjian,Zhao Siyuan,He Zhiliang

Abstract

Outburst floods resulting from giant landslide dams can cause devastating damage to hundreds or thousands of kilometres of a river. Accurate and timely delineation of flood inundated areas is essential for disaster assessment and mitigation. There have been significant advances in flood mapping using remote sensing images in recent years, but little attention has been devoted to outburst flood mapping. The short-duration nature of these events and observation constraints from cloud cover have significantly challenged outburst flood mapping. This study used the outburst flood of the Baige landslide dam on the Jinsha River on 3 November 2018 as an example to propose a new flood mapping method that combines optical images from Sentinel-2, synthetic aperture radar (SAR) images from Sentinel-1 and a Digital Elevation Model (DEM). First, in the cloud-free region, a comparison of four spectral indexes calculated from time series of Sentinel-2 images indicated that the normalized difference vegetation index (NDVI) with the threshold of 0.15 provided the best separation flooded area. Subsequently, in the cloud-covered region, an analysis of dual-polarization RGB false color composites images and backscattering coefficient differences of Sentinel-1 SAR data were found an apparent response to ground roughness’s changes caused by the flood. We carried out the flood range prediction model based on the random forest algorithm. Training samples consisted of 13 feature vectors obtained from the Hue-Saturation-Value color space, backscattering coefficient differences/ratio, DEM data, and a label set from the flood range prepared from Sentinel-2 images. Finally, a field investigation and confusion matrix tested the prediction accuracy of the end-of-flood map. The overall accuracy and Kappa coefficient were 92.3%, 0.89 respectively. The full extent of the outburst floods was successfully obtained within five days of its occurrence. The multi-source data merging framework and the massive sample preparation method with SAR images proposed in this paper, provide a practical demonstration for similar machine learning applications using remote sensing.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3