Underground Coal Fire Detection and Monitoring Based on Landsat-8 and Sentinel-1 Data Sets in Miquan Fire Area, XinJiang

Author:

Liu JinglongORCID,Wang Yunjia,Yan Shiyong,Zhao Feng,Li Yi,Dang Libo,Liu Xixi,Shao Yaqin,Peng Bin

Abstract

Underground coal fires have become a worldwide disaster, which brings serious environmental pollution and massive energy waste. Xinjiang is one of the regions that is seriously affected by the underground coal fires. After years of extinguishing, the underground coal fire areas in Xinjiang have not been significantly reduced yet. To extinguish underground coal fires, it is critical to identify and monitor them. Recently, remote sensing technologies have been showing great potential in coal fires’ identification and monitoring. The thermal infrared technology is usually used to detect thermal anomalies in coal fire areas, and the Differential Synthetic Aperture Radar Interferometry (DInSAR) technology for the detection of coal fires related to ground subsidence. However, non-coal fire thermal anomalies caused by ground objects with low specific heat capacity, and surface subsidence caused by mining and crustal activities have seriously affected the detection accuracy of coal fire areas. To improve coal fires’ detection accuracy by using remote sensing technologies, this study firstly obtains temperature, normalized difference vegetation index (NDVI), and subsidence information based on Landsat8 and Sentinel-1 data, respectively. Then, a multi-source information strength and weakness constraint method (SWCM) is proposed for coal fire identification and analysis. The results show that the proposed SWCM has the highest coal fire identification accuracy among the employed methods. Moreover, it can significantly reduce the commission and omission error caused by non-coal fire-related thermal anomalies and subsidence. Specifically, the commission error is reduced by 70.4% on average, and the omission error is reduced by 30.6%. Based on the results, the spatio-temporal change characteristics of the coal fire areas have been obtained. In addition, it is found that there is a significant negative correlation between the time-series temperature and the subsidence rate of the coal fire areas (R2 reaches 0.82), which indicates the feasibility of using both temperature and subsidence to identify and monitor underground coal fires.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3