Geoscience Fieldwork in the Age of COVID-19 and Beyond: Commentary on the Development of a Virtual Geological Field Trip to Whitefish Falls, Ontario, Canada

Author:

Peace Alexander L.ORCID,Gabriel Jeremy J.ORCID,Eyles Carolyn

Abstract

In response to the COVID-19 pandemic and resultant cancelation of geoscience fieldwork, as well as outstanding accessibility issues inherent in conducting fieldwork, we developed a virtual geological fieldtrip (VFT) to the Huronian age deposits in the Whitefish Falls area, Ontario, Canada. This region is a geologically significant site in which many Ontario universities conduct undergraduate teaching due to the high-quality exposures. In this contribution, we describe and comment on the development of this openly available resource, the motivations in doing so, the challenges faced, its pedagogical impact and relevance, as well as provide suggestions to others in the development of such resources. Our multimedia VFT combines 360° imagery, georeferenced data on integrated maps, and multi-scale imagery (aerial/drone, outcrop, and thin section images). The VFT was built using the Esri Storymaps platform, and thus offers us the opportunity to review the effectiveness of building such resources using this medium, as well as our approach to doing so. We conclude that the Esri Storymaps platform provides a sound medium for the dissemination of multimedia VFTs, but that some aspects of in-person fieldwork remain hard to replicate. Most notably, this affects “hands on experience” and specific activities such as geological mapping. In addition, while VFTs alleviate some accessibility barriers to geoscience fieldwork, substantial barriers remain that should remain the focus of both pedagogical and geoscience work.

Funder

Open Educational Resources Create Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3