Stereolithography 3D Printer for Micromodel Fabrications with Comprehensive Accuracy Evaluation by Using Microtomography

Author:

Patmonoaji AnindityoORCID,Mahardika Mohammmad Azis,Nasir MuhammadORCID,She Yun,Wang Weicen,Muflikhun Muhammad AkhsinORCID,Suekane Tetsuya

Abstract

Micromodels are important for studying various pore-scale phenomena in hydrogeology. However, the fabrication of a custom micromodel involves complicated steps with cost-prohibitive equipment. The direct fabrication of micromodels with a 3D printer can accelerate the fabrication steps and reduce the cost. A stereolithography (SLA) 3D printer is one of the best options because it has sufficient printing performance for micromodel fabrication and is relatively inexpensive. However, it is not without drawbacks. In this report, we explored the capability of an SLA 3D printer for micromodel fabrication. Various parameters affecting the printing results, such as the effects of geometries, dimensions, printing axis configurations, printing thickness resolutions, and pattern thicknesses were investigated using microtomography for the first time. Eventually, the most optimal printing configuration was then also discussed. In the end, a complete micromodel was printed, assembled, and used for fluid displacement experiments. As a demonstration, viscous and capillary fingerings were successfully performed using this micromodel design.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3