Capillary-Driven Microdevice Mixer Using Additive Manufacturing (SLA Technology)

Author:

Cabrera-Moreta Victor H.12ORCID,Casals-Terré Jasmina1ORCID

Affiliation:

1. Laboratory of Microsystems & Nanotechnology, Mechanical Engineering Department, Polytechnic University of Catalonia (UPC), Colom Street 11, 08222 Barcelona, Spain

2. Mechanical Engineering Department, Universidad Politécnica Salesiana, Quito 170517, Ecuador

Abstract

This study presents a novel microfluidic mixer designed, fabricated, and characterized using additive manufacturing technology—stereolithography (SLA)—and harnessing capillarity principles achieved through microstructure patterning. Micromixers are integral components in optimizing mixing and reaction processes within microfluidic systems. The proposed microdevice employs a tank mixing method capable of blending two fluids. With a channel length of up to 6 mm, the process time is remarkably swift at 3 s, and the compact device measures 35 × 40 × 5 mm. The capillarity-driven working flow rates range from 1 μL/s to 37 μL/s, facilitated by channel dimensions varying between 400 μm and 850 μm. The total liquid volume within the device channels is 1652 mL (6176 μL including the supply tanks). The mix index, representing the homogeneity of the two fluids, is approximately 0.55 along the main channel. The manufacturing process, encompassing printing, isopropyl cleaning, and UV (ultraviolet) curing, is completed within 90 min. This microfluidic mixer showcases efficient mixing capabilities, rapid processing, and a compact design, marking it as a promising advancement in microfluidic technology. The new microfluidic mixer is a major step forward in microfluidic technology, providing a cost-effective and flexible solution for various uses. Its compatibility with SLA additive manufacturing allows for quick prototyping and design improvements, making it valuable for research and practical applications in chemistry, biology, and diagnostics. This study highlights the importance of combining advanced manufacturing techniques with basic fluid dynamics to create effective and easy-to-use microfluidic solutions.

Funder

Universidad Politécnica Salesiana

Ministerio de Ciencia e Innovación

Agencia Estatal de Investigación

AGUAR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3