Customization of Computed Tomography Radio-Opacity in 3D-Printed Contrast-Injectable Tumor Phantoms

Author:

Kalidindi Yuktesh1,Ganapathy Aravinda Krishna2ORCID,Cunningham Liam2,Lovato Adriene3,Albers Brian4,Shetty Anup S.3,Ballard David H.3ORCID

Affiliation:

1. School of Medicine, Saint Louis University, St. Louis, MO 63104, USA

2. School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA

3. Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA

4. St. Louis Children’s Hospital Medical 3D Printing Center, BJC HealthCare, St. Louis, MO 63110, USA

Abstract

Medical Imaging Phantoms (MIPs) calibrate imaging devices, train medical professionals, and can help procedural planning. Traditional MIPs are costly and limited in customization. Additive manufacturing allows for customizable, patient-specific phantoms. This study examines the CT attenuation characteristics of contrast-injectable, chambered 3D-printed phantoms to optimize tissue-mimicking capabilities. A MIP was constructed from a CT of a complex pelvic tumor near the iliac bifurcation. A 3D reconstruction of these structures composed of three chambers (aorta, inferior vena cava, tumor) with ports for contrast injection was 3D printed. Desired attenuations were 200 HU (arterial I), 150 HU (venous I), 40 HU (tumor I), 150 HU (arterial II), 90 HU (venous II), and 400 HU (tumor II). Solutions of Optiray 350 and water were injected, and the phantom was scanned on CT. Attenuations were measured using ROIs. Mean attenuation for the six phases was as follows: 37.49 HU for tumor I, 200.50 HU for venous I, 227.92 HU for arterial I, 326.20 HU for tumor II, 91.32 HU for venous II, and 132.08 HU for arterial II. Although the percent differences between observed and goal attenuation were high, the observed relative HU differences between phases were similar to goal HU differences. The observed attenuations reflected the relative concentrations of contrast solutions used, exhibiting a strong positive correlation with contrast concentration. The contrast-injectable tumor phantom exhibited a useful physiologic range of attenuation values, enabling the modification of tissue-mimicking 3D-printed phantoms even after the manufacturing process.

Funder

National Institutes of Health TOP-TIER

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3