Dual-Stream Feature Extraction Network Based on CNN and Transformer for Building Extraction

Author:

Xia Liegang1ORCID,Mi Shulin1,Zhang Junxia1,Luo Jiancheng2,Shen Zhanfeng2,Cheng Yubin1

Affiliation:

1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100875, China

Abstract

Automatically extracting 2D buildings from high-resolution remote sensing images is among the most popular research directions in the area of remote sensing information extraction. Semantic segmentation based on a CNN or transformer has greatly improved building extraction accuracy. A CNN is good at local feature extraction, but its ability to acquire global features is poor, which can lead to incorrect and missed detection of buildings. The advantage of transformer models lies in their global receptive field, but they do not perform well in extracting local features, resulting in poor local detail for building extraction. We propose a CNN-based and transformer-based dual-stream feature extraction network (DSFENet) in this paper, for accurate building extraction. In the encoder, convolution extracts the local features for buildings, and the transformer realizes the global representation of the buildings. The effective combination of local and global features greatly enhances the network’s feature extraction ability. We validated the capability of DSFENet on the Google Image dataset and the ISPRS Vaihingen dataset. DSEFNet achieved the best accuracy performance compared to other state-of-the-art models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3