Dual-Stream Feature Extraction Network Based on CNN and Transformer for Building Extraction
Author:
Affiliation:
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100875, China
Abstract
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
MDPI AG
Subject
General Earth and Planetary Sciences
Link
https://www.mdpi.com/2072-4292/15/10/2689/pdf
Reference42 articles.
1. Segmentation of airborne point cloud data for automatic building roof extraction;Gilani;GISci. Remote Sens.,2018
2. DSA-Net: A novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images;Ding;Int. J. Appl. Earth Obs. Geoinf.,2021
3. Yang, G., Zhang, Q., and Zhang, G. (2020). EANet: Edge-aware network for the extraction of buildings from aerial images. Remote Sens., 12.
4. Multi-scale three-dimensional detection of urban buildings using aerial LiDAR data;Cao;GISci. Remote Sens.,2020
5. Automatic building extraction from high-resolution aerial imagery via fully convolutional encoder-decoder network with non-local block;Wang;IEEE Access,2020
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Utilizing Dual-Stream Encoding and Transformer for Boundary-Aware Agricultural Parcel Extraction in Remote Sensing Images;Remote Sensing;2024-07-18
2. A method for building extraction in remote sensing images based on swintransformer;International Journal of Digital Earth;2024-05-15
3. MAD-UNet: A Multi-Region UAV Remote Sensing Network for Rural Building Extraction;Sensors;2024-04-09
4. Multi-branch reverse attention semantic segmentation network for building extraction;The Egyptian Journal of Remote Sensing and Space Sciences;2024-03
5. A Building Extraction Method for High-Resolution Remote Sensing Images with Multiple Attentions and Parallel Encoders Combining Enhanced Spectral Information;Sensors;2024-02-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3