Utilizing Dual-Stream Encoding and Transformer for Boundary-Aware Agricultural Parcel Extraction in Remote Sensing Images

Author:

Xu Weiming1ORCID,Wang Juan1,Wang Chengjun2ORCID,Li Ziwei1ORCID,Zhang Jianchang1,Su Hua1ORCID,Wu Sheng1

Affiliation:

1. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, National Engineering Research Center of Geospatial Information Technology, The Digital Economy Alliance of Fujian, The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350108, China

2. School of Computer Science & School of Cyberspace Science, Xiangtan University, Xiangtan 411110, China

Abstract

The accurate extraction of agricultural parcels from remote sensing images is crucial for advanced agricultural management and monitoring systems. Existing methods primarily emphasize regional accuracy over boundary quality, often resulting in fragmented outputs due to uniform crop types, diverse agricultural practices, and environmental variations. To address these issues, this paper proposes DSTBA-Net, an end-to-end encoder–decoder architecture. Initially, we introduce a Dual-Stream Feature Extraction (DSFE) mechanism within the encoder, which consists of Residual Blocks and Boundary Feature Guidance (BFG) to separately process image and boundary data. The extracted features are then fused in the Global Feature Fusion Module (GFFM), utilizing Transformer technology to further integrate global and detailed information. In the decoder, we employ Feature Compensation Recovery (FCR) to restore critical information lost during the encoding process. Additionally, the network is optimized using a boundary-aware weighted loss strategy. DSTBA-Net aims to achieve high precision in agricultural parcel segmentation and accurate boundary extraction. To evaluate the model’s effectiveness, we conducted experiments on agricultural parcel extraction in Denmark (Europe) and Shandong (Asia). Both quantitative and qualitative analyses show that DSTBA-Net outperforms comparative methods, offering significant advantages in agricultural parcel extraction.

Funder

National Natural Science Foundation of China

Fujian Provincial Science and Technology Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3