A Building Extraction Method for High-Resolution Remote Sensing Images with Multiple Attentions and Parallel Encoders Combining Enhanced Spectral Information

Author:

Pang Zhaojun1,Hu Rongming1,Zhu Wu2ORCID,Zhu Renyi3,Liao Yuxin1,Han Xiying3

Affiliation:

1. School of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China

2. School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China

3. The First Institute of Geoinformation Mapping, Ministry of Natural Resources, Xi’an 710054, China

Abstract

Accurately extracting pixel-level buildings from high-resolution remote sensing images is significant for various geographical information applications. Influenced by different natural, cultural, and social development levels, buildings may vary in shape and distribution, making it difficult for the network to maintain a stable segmentation effect of buildings in different areas of the image. In addition, the complex spectra of features in remote sensing images can affect the extracted details of multi-scale buildings in different ways. To this end, this study selects parts of Xi’an City, Shaanxi Province, China, as the study area. A parallel encoded building extraction network (MARS-Net) incorporating multiple attention mechanisms is proposed. MARS-Net builds its parallel encoder through DCNN and transformer to take advantage of their extraction of local and global features. According to the different depth positions of the network, coordinate attention (CA) and convolutional block attention module (CBAM) are introduced to bridge the encoder and decoder to retain richer spatial and semantic information during the encoding process, and adding the dense atrous spatial pyramid pooling (DenseASPP) captures multi-scale contextual information during the upsampling of the layers of the decoder. In addition, a spectral information enhancement module (SIEM) is designed in this study. SIEM further enhances building segmentation by blending and enhancing multi-band building information with relationships between bands. The experimental results show that MARS-Net performs better extraction results and obtains more effective enhancement after adding SIEM. The IoU on the self-built Xi’an and WHU building datasets are 87.53% and 89.62%, respectively, while the respective F1 scores are 93.34% and 94.52%.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3