Bias-Corrected RADARSAT-2 Soil Moisture Dynamics Reveal Discharge Hysteresis at An Agricultural Watershed

Author:

Lee Ju1,Lindenschmidt Karl-Erich2ORCID

Affiliation:

1. Department of Geography, Environment & Geomatics, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada

2. Global Institute for Water Security, School of Environment and Sustainability, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada

Abstract

Satellites are designed to monitor geospatial data over large areas at a catchment scale. However, most of satellite validation works are conducted at local point scales with a lack of spatial representativeness. Although upscaling them with a spatial average of several point data collected in the field, it is almost impossible to reorganize backscattering responses at pixel scales. Considering the influence of soil storage on watershed streamflow, we thus suggested watershed-scale hydrological validation. In addition, to overcome the limitations of backscattering models that are widely used for C-band Synthetic Aperture Radar (SAR) soil moisture but applied to bare soils only, in this study, RADARSAT-2 soil moisture was stochastically retrieved to correct vegetation effects arising from agricultural lands. Roughness-corrected soil moisture retrievals were assessed at various spatial scales over the Brightwater Creek basin (land cover: crop lands, gross drainage area: 1540 km2) in Saskatchewan, Canada. At the point scale, local station data showed that the Root Mean Square Errors (RMSEs), Unbiased RMSEs (ubRMSEs) and biases of Radarsat-2 were 0.06~0.09 m3/m3, 0.04~0.08 m3/m3 and 0.01~0.05 m3/m3, respectively, while 1 km Soil Moisture Active Passive (SMAP) showed underestimation at RMSEs of 0.1~0.22 m3/m3 and biases of −0.036~−0.2080 m3/m3. Although SMAP soil moisture better distinguished the contributing area at the catchment scale, Radarsat-2 soil moisture showed a better discharge hysteresis. A reliable estimation of the soil storage dynamics is more important for discharge forecasting than a static classification of contributing and noncontributing areas.

Funder

Global Water Futures program at the University of Saskatchewan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3