Improving runoff prediction through the assimilation of the ASCAT soil moisture product

Author:

Brocca L.,Melone F.,Moramarco T.,Wagner W.,Naeimi V.,Bartalis Z.,Hasenauer S.

Abstract

Abstract. The role and the importance of soil moisture for meteorological, agricultural and hydrological applications is widely known. Remote sensing offers the unique capability to monitor soil moisture over large areas (catchment scale) with, nowadays, a temporal resolution suitable for hydrological purposes. However, the accuracy of the remotely sensed soil moisture estimates has to be carefully checked. The validation of these estimates with in-situ measurements is not straightforward due the well-known problems related to the spatial mismatch and the measurement accuracy. The analysis of the effects deriving from assimilating remotely sensed soil moisture data into hydrological or meteorological models could represent a more valuable method to test their reliability. In particular, the assimilation of satellite-derived soil moisture estimates into rainfall-runoff models at different scales and over different regions represents an important scientific and operational issue. In this study, the soil wetness index (SWI) product derived from the Advanced SCATterometer (ASCAT) sensor onboard of the Metop satellite was tested. The SWI was firstly compared with the soil moisture temporal pattern derived from a continuous rainfall-runoff model (MISDc) to assess its relationship with modeled data. Then, by using a simple data assimilation technique, the linearly rescaled SWI that matches the range of variability of modelled data (denoted as SWI*) was assimilated into MISDc and the model performance on flood estimation was analyzed. Moreover, three synthetic experiments considering errors on rainfall, model parameters and initial soil wetness conditions were carried out. These experiments allowed to further investigate the SWI potential when uncertain conditions take place. The most significant flood events, which occurred in the period 2000–2009 on five subcatchments of the Upper Tiber River in central Italy, ranging in extension between 100 and 650 km2, were used as case studies. Results reveal that the SWI derived from the ASCAT sensor can be conveniently adopted to improve runoff prediction in the study area, mainly if the initial soil wetness conditions are unknown.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3