The Impact of Sentinel-1-Corrected Fractal Roughness on Soil Moisture Retrievals

Author:

Lee Ju Hyoung1ORCID,Kim Hyun-Cheol2ORCID

Affiliation:

1. Department of Geography, Environment and Geomatics, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada

2. Center of RS & GIS, KOPRI 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea

Abstract

Fractals are widely recognized as one of the best geometric models to depict soil roughness on various scales from tillage to micro-topography smaller than radar wavelength. However, most fractal approaches require an additional geometric description of experimental sites to be analysed by existing radiative transfer models. For example, fractal dimension or spectral parameter is often related to root-mean-square (RMS) height to be characterized as the microwave surface. However, field measurements hardly represent multi-scale roughness. In this study, we rescaled Power Spectral Density with Synthetic Aperture Radar (SAR)-inverted rms height, and estimated non-stationary fractal roughness to accommodate multi-scale roughness into a radiative transfer model structure. As a result, soil moisture was retrieved over the Yanco site in Australia. Local validation shows that the Integral Equation Model (IEM) poorly simulated backscatters using inverted roughness as compared to fractal roughness even in anisotropic conditions. This is considered due to a violation of time-invariance assumption used for inversion. Spatial analysis also shows that multi-scale fractal roughness better illustrated the hydrologically reasonable backscattering partitioning, as compared to inverted roughness. Fractal roughness showed a greater contribution of roughness to backscattering in dry conditions. Differences between IEM backscattering and measurement were lower, even when the isotropic assumption of the fractal model was violated. In wet conditions, the contribution of soil moisture to backscattering was shown more clearly by fractal roughness. These results suggest that the multi-scale fractal roughness can be better adapted to the IEM even in anisotropic conditions than the inversion to assume time-invariance of roughness.

Funder

Global Water Futures

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3