Enhancement Effect of a Diamond Network on the Flow Boiling Heat Transfer Characteristics of a Diamond/Cu Heat Sink

Author:

Wu Nan123,Sun Mingmei123ORCID,Guo Hong123,Xie Zhongnan123,Du Shijie123

Affiliation:

1. State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd., Beijing 100088, China

2. GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China

3. General Research Institute for Nonferrous Metals, Beijing 100088, China

Abstract

The use of a micro heat sink is an effective means of solving the problem of high-power chip heat dissipation. Diamond/Cu composites exhibit high thermal conductivity and a linear thermal expansion coefficient that is compatible with semiconductor materials, rendering them ideal micro heat sink materials. The aim of this study was to fabricate diamond/Cu and Cu separately as heat sinks and subject them to flow boiling heat transfer experiments. The results indicate that the diamond/Cu heat sink displayed a decrease in wall superheat of 10.2–14.5 °C and an improvement in heat transfer coefficient of 38–51% compared with the Cu heat sink under identical heat fluxes. The heat sink also exhibits enhanced thermal uniformity. Secondary diamond particles are incorporated into the gaps of the main diamonds, thereby constructing a three-dimensional heat conduction network within the composite material. The diamond network enhances the internal heat flux of the material while also creating more nucleation sites on the surface. These increase the boiling intensity of the diamond/Cu heat sink, leading to better heat transfer performance. By combining the transient thermal model with computational fluid dynamics, a heat transfer model based on the diamond/Cu heat sink is proposed. The efficient heat dissipation capability of diamond/Cu heat sinks can lower the working temperature of microelectronic devices, thereby improving device performance and reliability during operation.

Funder

Youth Fund Project

Youth Talent Nurturing Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3