LASSO Regression Modeling on Prediction of Medical Terms among Seafarers’ Health Documents Using Tidy Text Mining

Author:

Chintalapudi NaliniORCID,Angeloni Ulrico,Battineni GopiORCID,di Canio Marzio,Marotta ClaudiaORCID,Rezza Giovanni,Sagaro Getu GamoORCID,Silenzi AndreaORCID,Amenta FrancescoORCID

Abstract

Generally, seafarers face a higher risk of illnesses and accidents than land workers. In most cases, there are no medical professionals on board seagoing vessels, which makes disease diagnosis even more difficult. When this occurs, onshore doctors may be able to provide medical advice through telemedicine by receiving better symptomatic and clinical details in the health abstracts of seafarers. The adoption of text mining techniques can assist in extracting diagnostic information from clinical texts. We applied lexicon sentimental analysis to explore the automatic labeling of positive and negative healthcare terms to seafarers’ text healthcare documents. This was due to the lack of experimental evaluations using computational techniques. In order to classify diseases and their associated symptoms, the LASSO regression algorithm is applied to analyze these text documents. A visualization of symptomatic data frequency for each disease can be achieved by analyzing TF-IDF values. The proposed approach allows for the classification of text documents with 93.8% accuracy by using a machine learning model called LASSO regression. It is possible to classify text documents effectively with tidy text mining libraries. In addition to delivering health assistance, this method can be used to classify diseases and establish health observatories. Knowledge developed in the present work will be applied to establish an Epidemiological Observatory of Seafarers’ Pathologies and Injuries. This Observatory will be a collaborative initiative of the Italian Ministry of Health, University of Camerino, and International Radio Medical Centre (C.I.R.M.), the Italian TMAS.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3