Feature Selection for Explaining Yellowfin Tuna Catch per Unit Effort Using Least Absolute Shrinkage and Selection Operator Regression

Author:

Yang Ling12,Zhou Weifeng1

Affiliation:

1. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China

2. College of Information Engineering, Zhejiang Ocean University, Zhoushan 316022, China

Abstract

To accurately identify the key features influencing the fisheries distribution of Pacific yellowfin tuna, this study analyzed data from 43 longline fishing vessels operated from 2008 to 2019. These vessels operated in the Pacific Ocean region (0° to 30° S; 110° E to 170° W), with a specific focus on 25 features of yellowfin tuna derived from marine environment data. For this purpose, this study opted for the Lasso regression analysis method to select features to predict Pacific yellowfin tuna fishing grounds, exploring the relationship between the catch per unit effort (CPUE) of yellowfin tuna and multiple features. This study reveals that latitude and water temperature at various depths, particularly the sea surface temperature of the preceding and subsequent months and the temperature at depths between 300 and 450 m, are the most significant features influencing CPUE. Additionally, chlorophyll concentration and large-scale climate indices (ONI and NPGIO) also have a notable impact on the distribution of CPUE for yellowfin tuna. Lasso regression effectively identifies features that are significantly correlated with the CPUE of yellowfin tuna, thereby demonstrating superior fit and predictive accuracy in comparison with other models. It provides a suitable methodological approach for selecting fishing ground features of yellowfin tuna in the Pacific Ocean.

Funder

National Key R&D Program of China

Central Public-interest Scientific Institution Basal Research Fund, ECSFR, CAFS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3